

LA-UR-19-32722

Approved for public release; distribution is unlimited.

Thermochemical and Thermophysical properties for the system of Ce metal and Ce hydride (deuteride) Title:

Author(s): Schulze, Roland K.

Intended for: support information for LDRD project

Report

Issued: 2019-12-23

Thermochemical and Thermophysical properties for the system of Ce metal and Ce hydride (deuteride)

Roland K. Schulze Los Alamos National Laboratory Los Alamos, NM 87545 rkschulze@lanl.gov

- Knowledge of these properties is necessary in order to properly build a physics based model of the Ce ejecta evolution (conversion) in high pressure hydrogen gas
- · Experimental measurements and corroboration with theory
- Knowledge of properties across phase space of the dynamic experiments:
 - Temperatures up to 1500K + if possible
 - Gas pressures from vacuum to ~ 8 atm (~100 atm in shocked condition)

Properties desired as a function of temperature

- Ce hydrogen CeH_x phase diagram at higher temperatures
- Ce and CeH₂ heat capacity (specific heat)
- Ce and CeH₂ thermal conductivity
- Ce and CeH₂ coefficient of thermal expansion (CTE)
- Reaction enthalpy Ce + H₂ \rightarrow CeH_{2+x}, Δ H = 206 kJ/mol
- CeH₂ melting temperature
- CeH₂ optical emissivity
- Diffusion of H in CeH_{2+x}
- Reaction rates Ce + H₂ → CeH_{2+x}
- Mechanical properties of CeH₂

Hypothesis: reactive conversion

$$Ce + H_2 \rightarrow CeH_{2+x}$$

→ other processes leading to particle breakup

$$Ce + H_2 \rightarrow$$

liquid Ce > 1071K δ -Ce >999K bcc γ -Ce >263K fcc

Fluorite crystal structure unit cell of CeH_2 . Blue spheres represent Ce and orange spheres H. For the dihydride, all the tetrahedral sites in the FCC base Ce lattice are fully occupied, and for the higher (CeH_{2+x}) stoichiometries, the octahedral sites become occupied.

© ASM International 2006. Diagram No. 2002024

Slide 2

Conceptual view of the early stage of hydriding

Diffusion

of D

 $f = \frac{P}{\sqrt{2\pi MkT}}$

Gas delivery (kinetic gas theory)

Transport of reactant to interface (hydrogen diffusion)

- Reaction at interface Ce + 2D \rightarrow CeD₂ + Δ H_f
- Reaction kinetics Ce + 2D \rightarrow CeD₂

Exothermic heat generation $\Delta H_f = -206 \text{ kJ/mol}$

- Heat flow into Ce metal center: $C_p(Ce)$, K(Ce)
 - Heat flow into CeD_2 skin: $C_p(CeD_2)$, $K(CeD_2)$
 - Heat partition into gas: $C_p(D_2)$, $K(D_2)$

Conversion process: parameters needed for model

Convective heat transfer to/from surrounding gas

Possible other factors

- Reaction volumetric change +26%
- Melting temperature of CeD₂
- CTE for Ce and CeD₂
- Mechanical properties of hydride

Slide 3

Reaction Front

D₂ (or He) gas

Cerium hydride

 CeD_2

headspace

Liquid Ce

particle

Heat generation

at interface from

reaction

F.D. Manchester and J.M. Pitre, The Ce-H (Cerium-Hydrogen) System, Phase Diagram Evaluations: Section II, J. Phase Equil. Vol. 18 No. 1, 1977, 63-77.

 ϵ is the CeD_{2+x} phase. This phase is stable in the two phase field from D/Ce=0.2 and higher. The ϵ phase is stable at higher temperatures from D/Ce=1.8 to ϵ 2.8, where the trihydride forms. Note that the CeD₂ phase remains solid under the right D₂ pressure conditions to at least 1200°C (1473K). It is important that we determine the melting temperature of CeD₂. Melting point might be in excess of 2000K based on similar structure Ce compounds (CeO₂).

CeH₂ melting temperature of 1353 K (1080°C), likely not correct L.I. Osadchaya, et. al., Preparation of Cerium Hydrides, Inorganic Materials, <u>39</u>, 11, 2003, 1142-1143.

Conversion process: Thermal stability of hydride product

$$Ce + D_2 \leftarrow \rightarrow CeD_2 + \Delta H_f$$

Conversion process: Thermal stability of hydride product

Conversion process: Thermal stability of hydride product

- The unary P-T phase diagram of CeH₂
- The CeH₂ P-T stability line (extrapolated from data) becomes the boundary between CeH₂ solid and vapor phases and the CeH₂ liquid and vapor phases. This makes sense since the once the CeH₂ is no longer stable (loss of hydrogen and conversion towards Ce metal liquid) the temperature is high enough to cause vaporization of the Ce.
- The triple point is estimated using the melting point of CeF₂ at 1710K
 - CeF₂ is has the same crystal habit (structurally identical) as CeH₂
 - CeF₂ is isoelectronic to CeH₂ the configuration is (Ce³⁺, 2H⁻, e⁻) which leads to a metallic-behavior hydride
- I don't know the direction/shape of the CeH₂ solid liquid boundary (most likely more vertical than I have it drawn)
- $\Delta H_{\text{sublimation}} > 0$ endothermic (will cool the system)
- $\Delta H_{\text{fusion}} > 0$ endothermic (will cool the system)
- $\Delta H_{\text{vaporization}} > 0$ endothermic (will cool the system)
- $\Delta H_{sublimation} = \Delta H_{fusion} + \Delta H_{vaporization}$
- For Ce metal $\Delta H_{sublimation} = 420 \text{ kJ/mol literature value}$
- The process of $CeH_{2(s)} \rightarrow Ce^{--}H_{2(g)}$ can be broken down as:
 - $CeH_{2(s)} \rightarrow Ce_{(s)} + H_{2(g)} + 206 \text{ kJ/mol}$
 - $Ce_{(s)} \rightarrow Ce_{(g)} + 420 \text{ kJ/mol}$
 - Total maximum of 626 kJ/mol possible required for the sublimation process of CeH_2 depending on what the final gas phase products are $(CeH_{2(g)} \text{ or } Ce_{(g)} \text{ and } H_{2(g)})$ cooling power
 - Regardless of the nature of the gas phase products this would definitely be (atomic/molecular) and couple to the gas

